Dynamical approach to synthesis of superheavy elements

Y. Aritomo

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan Flerov Laboratory of Nuclear Reactions, Dubna, Russia

the RIBF Nuclear Physics Seminars 169th 29th October, 2013

Contains

1. Introduction

Superheavy Elements and Theoretical approaches

2. Model

Dynamical model with Langevin equation Two center shell model

3. Results

Evaporation residue cross section Mass distribution of Fission fragments

- 4. The way to synthesize new Superheavy elements by secondary beam
- 5. Summary

Periodic Table

Super Heavy Elements \rightarrow less stable

1. Introduction Nuclear Chart and Stability of Nuclei

Our Interests

- Next magic number ←Z=82, N=126
- Verification of `Island of Stability' (predicted by macroscopic-microscopic model in 1960's)
- Synthesis of new elements

Yu.Ts.Oganessian

Fission barrier of Superheavy Elements

Stability of Superheavy nuclei

fissility parameter

$$x = \frac{E_C}{2E_s} = \frac{Z^2/A}{50.883 \left\{ 1 - 1.7826 \left[(N - Z)/A \right]^2 \right\}}$$

Spherical nucleus

Surface energy

$$E_s = 4\pi r^2 A^{2/3} \gamma$$

Coulomb energy

$$E_C = \frac{3e^2}{5r_0} \frac{Z^2}{A^{1/3}}$$

Ys.Ts. Oganessian, Yu.A. Lazarev Treatise on Heavy-Ion Science vol.4 (1985)

Lab	Country	City	Accelerator	Separator
FLNR	Russia	Dubna	U400 U400M	DGFRS VASSILISSA
GSI	Germany	Darmstadt	UNILAC	SHIP TASCA
RIKEN	Japan	Wako	RILAC	GALIS
LBNL	USA	Berkeley	88-inch Cyclotron	BGS
GANIL	France	Caen	<i>SPIRAL2's LINAC accelerator</i>	<i>S3 (Super Separator Spectrometer)</i>

FLNR (Russia)

G.N. Flerov (1913 - 1990)

Yu.Ts. Oganessian (1933-)

GSI (Germany)

Institute of Physics

P. Armbruster G. Muenzenberg (1940-) (1931-)

S. Hofmann (1943-)

RIKEN (Japan)

K. Morita (1957-)

Fusion process in Superheavy mass region

"Cold" and "Hot" Fusion Reactions

<u>Cold Fusion</u> → doubly magic target nuclei: Pb, Bi; E*(CN) = 10 – 20 MeV; evaporation of 1 – 2 neutrons; up to now successful for Z ≤ 113

<u>Hot Fusion</u> → actinide targets (U, Cm, ...) and ⁴⁸Ca projectiles; $E^{*}(CN) = 30 - 40 \text{ MeV}$; evaporation of 3 – 4 neutrons; up to now successful for Z ≤ 118

reaction Q-value small

Cold fusion reaction Hot fusion reaction					
1994					
110 Ds ${}^{62}Ni + {}^{208}Pb \rightarrow {}^{269}110 + n$ (GSI)					
2012 119 ⁵⁰ Ti + ²⁴⁹ Bk → ^{296,295} 119 + 3-4n (GSI- TASCA)					
114 Fl ⁴⁸ Ca + ²⁴⁴ Pu \rightarrow ²⁹² 114 + 3n (FLNR) \leftarrow named in May. 2012					
2000					
116 Lv ⁴⁸ Ca + ²⁴⁸ Cm \rightarrow ²⁹² 116 + 4n (FLNR) \leftarrow named in May. 2012					
2002					
118 ${}^{48}Ca + {}^{249}Cf \rightarrow {}^{294}118 + 3n$ (FLNR)					
2003					
115 ⁴⁸ Ca + ²⁴³ Am → ²⁸⁸ 115 + 3n → ²⁸⁴ 113 + α (FLNR)					
2004					
113 $^{70}Zn + ^{209}Bi \rightarrow ^{278}113 + n$ (RIKEN)					
2010					
117 ${}^{48}Ca + {}^{249}Bk \rightarrow {}^{294,293}117 + 3-4n (FLNR)$					

Experimental data

Evaporation residue cross sections

2-1. Estimation of cross sections2-2. Dynamical Equation

$$\sigma_{ER} = \frac{\pi \hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E_{cm},\ell) P_{CN}(E^*,\ell) W(E^*,\ell)$$

Recent Development of Theoretical Models

	Ті	P _{CN}	W _{suv}
Antonenko, Admiyan, Nasirov, Cherepanov, Volkov, Giardina, Scheid	Simple WKB	1D di-nucleus confi. Statistical method	Statistical model
Aritomo, Ohta	Experimental data, Gross-Kalinovski	3D two-center shell model 3D-Langevin eq.	Langevin with Statistical model
Bouriquet, Shen, Kosenko, Boilley, Abe	Gross-Kalinovski	2D two-center LD model 2D-Langevin eq.	Statistical model (KEWPIE)
Ohta	Simple WKB	Empirical function derived from results with 3D-Langevin	Statistical model
Zagrebaev, Greiner	Quantum (CC or empirical model)	3D two-core model Master eq.	Statistical model
Zagrebaev, Greiner, Aritomo, Karpov, Noumenko	Unified model 3D two-center shell model 3D-Langevin eq.		Statistical model
Swiatecki, Wilczynska, Wilczynski	Empirical method	1D-Diffusion model Analytical formula	Statistical model
Misicu, Gupta, Greiner	Deformation and Orientation		
Ichikawa, Iwamoto, Moller, Sierk	Deformation and Quadrupole zero-point vibrational energy		

$$T(E,l) = \int f(B) \frac{1}{1 + \exp\left(\frac{2\pi}{\hbar \omega_B(l)} \left[B + \frac{\hbar^2}{2\mu R_B^2(l)}l(l+1) - E\right]\right)} dB.$$

$$f(B) = N \times \begin{cases} \exp\left[-\left(\frac{B-B_m}{\Delta_1}\right)^2\right], & B < B_m\\ \exp\left[-\left(\frac{B-B_m}{\Delta_2}\right)^2\right], & B > B_m, \end{cases}$$

V.I. Zagrebaev, et al. Phy. Rev. C. 65. (2001) 014607

FIG. 1. Capture cross sections $^{16}O + ^{208}Pb$ ⁴⁸Ca the [11]. in +²⁰⁸Pb ⁴⁸Ca+²⁴⁴Pu [12]. and fusion reactions. Dashed [13] lines represent one-dimensional barrier penetration calculations. Solid lines show the effect of dynamic deformation of nuclear surfaces (see the text). The arrows marked by B_0 and B_s show the positions of the corresponding Coulomb barrier at zero deformation and at the saddle point.

Fission width

Fission width

$$\Gamma_{f}^{BW} = \frac{1}{2\pi\rho(E^{*})} \int_{0}^{E^{*}-U_{B}} dK \ \rho(E^{*}-U_{B}-K)$$

Bohr and Wheeler (1939) Statistical model (transition state method) initial state and final state

$$\sim \frac{T}{2\pi} \exp\left\{-\frac{U_B}{T}\right\}$$

Figure 10.5 Schematic illustration of the fission mode of compound-nucleus decay. See text for a description.

Recent Development of Theoretical Models

	Ті	P _{CN}	W _{suv}
Antonenko, Admiyan, Nasirov, Cherepanov, Volkov, Giardina, Scheid	Simple WKB	1D di-nucleus confi. Statistical method	Statistical model
Aritomo, Ohta	Experimental data, Gross-Kalinovski	3D two-center shell model 3D-Langevin eq.	Langevin with Statistical model
Bouriquet, Shen, Kosenko, Boilley, Abe	Gross-Kalinovski	2D two-center LD model 2D-Langevin eq.	Statistical model (KEWPIE)
Ohta	Simple WKB	Empirical function derived from results with 3D-Langevin	Statistical model
Zagrebaev, Greiner	Quantum (CC or empirical model)	3D two-core model Master eq.	Statistical model
Zagrebaev, Greiner, Aritomo, Karpov, Noumenko	Unified model 3D two-center shell model 3D-Langevin eq.		Statistical model
Swiatecki, Wilczynska, Wilczynski	Empirical method	1D-Diffusion model Analytical formula	Statistical model
Misicu, Gupta, Greiner	Deformation and Orientation		
Ichikawa, Iwamoto, Moller, Sierk	Deformation and Quadrupole zero-point vibrational energy		

The macroscopic dynamical model. Fusion of two nuclear liquid drops.

Nuclear shape is described by Two center parametrozation

The dinuclear system concept.

Conservation of nuclear individualities.

 $\sigma_{ER} = \frac{\pi \hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E_{cm},\ell) P_{CN}(E^*,\ell) W(E^*,\ell)$

2-1. Potential Two-center shell model (z, δ, α)

2-2. Equation trajectory calculation

Overview of Dynamical Process in reaction ³⁶S+²³⁸U

Nuclear shape

two-center parametrization (z, δ, α)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)

 $q(z,\delta,\alpha)$

$$z = \frac{z_0}{BR}$$
$$B = \frac{3+\delta}{3-2\delta}$$

R: Radius of the spherical compound nucleus

$$\delta = \frac{3(a-b)}{2a+b} \qquad (\delta 1 = \delta 2)$$
$$\alpha = \frac{A_1 - A_2}{A_{CN}}$$

Potential Energy

$$V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell+1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{DM}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

T : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki

- E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E^0_{shell} : Shell correction energy at T=0
- *I*: Moment of inertia for rigid body

 $\Phi(T)$: Temperature dependent factor

$$\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$$
$$E_d = 20 \,\text{MeV}$$

Potential Energy

$$V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell+1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{DM}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

T : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki

 E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E^0_{shell} : Shell correction energy at T=0

 $\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$

 $E_d = 20 \,\mathrm{MeV}$

I: Moment of inertia for rigid body

 $\Phi(T)$: Temperature dependent factor

Fission barrier recovers at low excitation energy

2-1. Potential Two-center shell model (z, δ, α)

2-2. Equation

Taking into account the fluctuation around the mean trajectory

<u>Thermal fluctuation</u> of nuclear shape → thermal fluctuation of collective motion

Multi-dimensional Langevin Equation

$$\frac{dq_i}{dt} = (m^{-1})_{ij} p_j$$
Friction Random force
dissipation fluctuation

$$\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j (t)$$
Newton equation
ordinary differential equation

$$\langle R_i(t) \rangle = 0, \ \langle R_i(t_1)R_j(t_2) \rangle = 2\delta_{ij}\delta(t_1 - t_2) : \text{ white noise (Markovian process)}$$

$$\sum_k g_{ik} g_{jk} = T\gamma_{ij}$$
Einstein relation Fluctuation-dissipation theorem

$$q_i: \text{ deformation coordinate} (nuclear shape) (Maruhn and Greiner, Z. Phys. 251(1972) 431)$$

 p_i : momentum

 m_{ii} : Hydrodynamical mass

(inertia mass)

 γ_{ij} : Wall and Window (one-body) dissipation (friction)

$$E_{\rm int} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)$$

 E_{int} : intrinsic energy, E^* : excitation energy

Fission process ²⁴⁰U E* < 20 MeV

Overview of Dynamical Process in reaction ³⁶S+²³⁸U

3. Results

Evaporation residue cross section Mass distribution of fission fragments

Calculation results ⁴⁸Ca + ²⁴⁴Pu

4. Way to synthesize new SHE

Ti, Cr, Fe etc. beams

Transfer reaction U+Th, U+Cm

Secondary beams

Cold fusion reaction Hot fusion reaction 1994 110 Ds ${}^{62}Ni + {}^{208}Pb \rightarrow {}^{269}110 + n$ (GSI) <u>111 Rg 64 Ni + 209 Bi $\rightarrow {}^{272}$ 111 + n (GSI)</u> 1996 112 Cn 70 Zn + 208 Pb \rightarrow 277 112 + n (GSI) \leftarrow named in Feb. 2010 1999 114 Fl $^{48}Ca + ^{244}Pu \rightarrow ^{292}114 + 3n$ (FLNR) \leftarrow named in May. 2012 2000 116 Ly ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{292}1\overline{16} + 4n$ (FLNR) \leftarrow named in May. 2012 2002 $\frac{48}{Ca} + \frac{249}{Cf} \rightarrow \frac{294}{118} + 3n$ (FLNR) 118 2003 115 $^{48}Ca + ^{243}Am \rightarrow ^{288}115 + 3n \rightarrow ^{284}113 + \alpha$ (FLNR) 2004 $70Zn + 209Bi \rightarrow 278113 + n$ (RIKEN) 113 2010 $^{48}Ca + ^{249}Bk \rightarrow ^{294,293}117 + 3-4n$ (FLNR) 117

3. Survival Process

Yu. Ts. Oganessian and K. Morita

$$\sigma_{ER} = \frac{\pi \hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E_{cm},\ell) P_{CN}(E^*,\ell) W(E^*,\ell)$$

One-dimensional Smoluchowski equation statistical code $\frac{\partial}{\partial t}P(q,\ell;t) = \frac{1}{\mu\beta}\frac{\partial}{\partial q}\left\{\frac{\partial V(q,\ell;t)}{\partial q}P(q,\ell;t)\right\} + \frac{T}{\mu\beta}\frac{\partial^2}{\partial q^2}P(q,\ell;t)$ $P(q, \ell; t)$; probability distribution 10 μ ; inertia mass ²⁹⁸114 5 β ; reduced friction $V_{IDM} + \Delta E_{Shell}$ 0 V(q) (MeV) q ; separation distance -5 -10 T(t): temperature \leftarrow statistical code SIMDEC Cooling curve -15

-20

-2

0

$$W(E_0^*, \ell; t) = \int_{\text{insides addle}} P(q, \ell; t) \, dq$$

W; survival probability

We assume the particle emissions are limited to neutron emission in the neutron-rich heavy nuclei.

4

6

8

2

q (fm)

$$V(q, \ell, T) = V_{LD}(q) + \frac{\hbar^2 \ell (\ell + 1)}{2I(q)} + V_{SH}(q, T)$$
$$V_{LD}(q) = E_S(q) + E_C(q)$$
$$V_{SH}(q, T) = E_{shell}^0(q) \Phi(T)$$

- *T* : nuclear temperature $E^* = aT^2$ *a* : level density parameter Toke and Swiatecki
- E_S : Generalized surface energy (finite range effect) E_C : Coulomb repulsion for diffused surface E_{shell}^0 : Shell correction energy at T=0
- *I*: Moment of inertia for rigid body
- $\Phi(T)$: Temperature dependent factor

$$\Phi(T) = \exp\left\{-\frac{aT^2}{E_d}\right\}$$

$$E_d = 20 \,\mathrm{MeV}$$

298114

Fission barrier recovers at low excitation energy

$$\Phi(T) = \exp\left(-\frac{E^*}{E_d}\right)$$
$$E_d = 20 \,\mathrm{MeV}$$

3. Survival process

4. Summary

- 1. The possibility of synthesizing a doubly magic superheavy nucleus, ²⁹⁸114₁₈₄, was investigated on the basis of fluctuation dissipation dynamics.
- 2. Owing to the neutron emissions, we must generate more neutron-rich compound nuclei.
- 3. To calculate the survival probability, we employ the dynamical model.
- 4. ³⁰⁴114 has two advantages to achieving a high survival probability.

1) small neutron separation energy and rapid cooling
2) the neutron number of the nucleus approaches that of the double closed shell

→ obtain a large fission barrier

5. The systematical investigation compared with the statistical model and dynamical one is necessary. We must apply the dynamical model for known systems.

What we can obtain under the conditions

Phenomenalism Dynamical Model based on Fluctuation-dissipation theory (Langevin eq, Fokker-Plank eq, etc) \leftarrow Classical trajectory analysis

We can obtain....Fission, Synthesis of SHEMass and TKE distribution of fission fragments $A_{CN}: 200 \sim 300$ Neutron multiplicityCharge distributionCross section (capture, mass symmetric fission, fusion)Angle of ejected particle, Kinetic energy loss (\leftarrow two body)

Conditions

Nuclear shape parameter Potential energy surface (LDM, shell correction energy, LS force) Transport coefficients (friction, inertia mass) ← Liner Response Theory Dynamical equation (memory effect, Einstein relation)

Collaborators

S. Chiba Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

K. Hagino *Department of Physics, Tohoku University*

K. Nishio Advanced Science Research Center, Japan Atomic Energy Agency

V.I. Zagrebaev, A.V. Karpov Flerov Laboratory of Nuclear Reactions

W. Greiner *Frankfurt Institute for Advanced Studies, J.W. Goethe University*

